The edge Folkman number $F_{e}(3,3 ; 4)$ is greater than 19

Aleksandar Bikov, Nedyalko Nenov
Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria asbikov@fmi.uni-sofia.bg, nenov@fmi.uni-sofia.bg

We denote by $\mathcal{H}_{e}(3,3 ; q)$ the set of graphs which have the property that in every coloring of their edges in two colors there is a monochromatic triangle and they do not contain a complete subgraph on q vertices K_{q}. The minimum number of vertices of graphs in $\mathcal{H}_{e}(3,3 ; q)$ is denoted by $F_{e}(3,3 ; q)$ and it is called an edge Folkman number. Folkman proved in [1] that $F_{e}(3,3 ; q)$ exists if and only if $q \geq 4$. It is well known that $F_{e}(3,3 ; q)=6$ if $q \geq 7$. We also know that $F_{e}(3,3 ; 6)=8$ [2] and that $F_{e}(3,3 ; 5)=15$. The upper bound $F_{e}(3,3 ; 5) \leq 15$ is proved in [4] and the lower bound is obtained in [5] with the help of computer. The exact value of the number $F_{e}(3,3 ; 4)$ is not known. For now we know that this number is between 19 and 786, [6] and [3]. By improving the algorithms used in [6] we obtain the new bound $F_{e}(3,3 ; 4) \geq 20$.

References

[1] J. Folkman, Graphs with monochromatic complete subgraph in every edge coloring, SIAM J. Appl. Math. 18, (1970) 19-24.
[2] R. L. Graham, On edgewise 2-colored graphs with monochromatic triangles containing no complete hexagon, J. Combin. Theory, 4:300, 1968.
[3] A. Lange, S. Radziszowski, X. Xu, Use of MAX-CUT for Ramsey Arrowing of Triangles, http://arxiv.org/abs/1207.3750, Submitted, 2012.
[4] N. Nenov, An example of a 15-vertex Ramsey (3,3)-graph with clique number 4, C. A. Acad. Bulg. Sci., 34, (1981) 1487-1489, (in Russian).
[5] K. Piwakowski, S. Radziszowski, S. Urbański, Computation of the Folkman number $F_{e}(3,3 ; 5)$, J. Graph Theory, 32, (1999) 41-49.
[6] S. Radziszowski, X. Xiaodong, On the Most Wanted Folkman Graph, Geombinatorics, XVI(4), (2007) 367-381.

