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We denote by He(3, 3; q) the set of graphs which have the property that
in every coloring of their edges in two colors there is a monochromatic
triangle and they do not contain a complete subgraph on q vertices Kq.
The minimum number of vertices of graphs in He(3, 3; q) is denoted by
Fe(3, 3; q) and it is called an edge Folkman number. Folkman proved
in [1] that Fe(3, 3; q) exists if and only if q ≥ 4. It is well known that
Fe(3, 3; q) = 6 if q ≥ 7. We also know that Fe(3, 3; 6) = 8 [2] and that
Fe(3, 3; 5) = 15. The upper bound Fe(3, 3; 5) ≤ 15 is proved in [4] and
the lower bound is obtained in [5] with the help of computer. The exact
value of the number Fe(3, 3; 4) is not known. For now we know that this
number is between 19 and 786, [6] and [3]. By improving the algorithms
used in [6] we obtain the new bound Fe(3, 3; 4) ≥ 20.
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