Codimension one coincidence indices

Dončo Dimovski

Macedonian Academy of Sciences and Arts, and
Faculty of Natural Sciences and Mathematics,
"Ss. Cyril and Methodius" University, Skopje, R. Macedonia
donco@pmf.ukim.mk
Using the geometric description of spin manifolds and spin structures, a generalization of one-parameter fixed point indices is obtained for codimension one coincidences.

Let $F, G: X \rightarrow Y$ be PL maps where X and Y are closed, connected, spin PL manifolds, X is $(n+1)$-dimensional and Y is n-dimensional, and $n \geq 4$. A coincidence of F and G is a point $a \in X$ such that $F(a)=G(a)$. The set of all the coincidences is denoted by $\operatorname{Coin}(F, G)$. For a family V of isolated circles of coincidences of F and G, two indices are defined: $\operatorname{ind}_{1}(F, G ; V)$ - which is an element in the first homology group $H_{1}(E)$, where E is the space of paths in $X \times Y$ from the graph of F to the graph of G; and $\operatorname{ind}_{2}(F, G ; V)$ - which is an element in the group 9_{2} with two elements.

Theorem. For a family V of isolated circles of coincidences of F and G in the same coincidence class there is a neighborhood N of V and a homotopy from F to H rel $X \backslash N$ such that $\operatorname{Coin}(H, G)=\operatorname{Coin}(F, G) \backslash V$ if and only if $\operatorname{ind}_{1}(F, G ; V)=0$ and ind ${ }_{2}(F, G ; V)=0$.

