Structure theorems for G-type spaces of ultradistributions over \mathbb{R}^d_+

Smiljana Jakšić

Faculty of Forestry, University of Belgrade, Serbia smiljana.jaksic@gmail.com

Two structure theorems for the *G*-type spaces of ultradistributions over $[0, \infty)^d$, i.e. $(G^{\alpha}_{\alpha}(\mathbb{R}^d_+))'$, $\alpha \geq 1$ are given. The first one states that $f \in (G^{\alpha}_{\alpha}(\mathbb{R}^d_+))'$, $\alpha \geq 1$ if and only if it can be written as

$$f = \left(\sum_{k \in \mathbb{N}_0^d} c_k \left(x D^2 + D - \frac{x}{4} + \frac{1}{2} \right)^k \right) F,$$

where the coefficients c_k have a suitable growth and $F \in L^2(\mathbb{R}^d_+)$. The second one uses the fact that $G^\alpha_\alpha(\mathbb{R}^d_+)$, $\alpha \geq 1$ is given as an injective inductive limit of Fréchet spaces and loosely speaking represents $f \in (G^\alpha_\alpha(\mathbb{R}^d_+))'$, $\alpha \geq 1$ by giving its action on each layer of the inductive limit in the following way

$$\langle f, \phi \rangle = \sum_{p,k \in \mathbb{N}_0^d} \int_{\mathbb{R}_+^d} F_{A,p,k}(x) x^{(p+k)/2} D^p \phi(x) dx$$
$$+ \sum_{|m| \le j, |n| \le j} \int_{\mathbb{R}_+^d} \tilde{F}_{A,n,m}(x) x^m D^n \phi(x) dx,$$

where the $L^2(\mathbb{R}^d_+)$ -functions $F_{A,p,k}$ and $\tilde{F}_{A,n,m}$ depend on the layer.