Some results about a filtration of starlike functions

NIKOLA TUNESKI

Department of Mathematics and Informatics, Faculty of Mechanical Engineering Ss. Cyril and Methodius University, Skopje, R. Macedonia

nikola.tuneski@mf.edu.mk

joint work with

DAVID SHOIKHET and MARK ELIN

Let \mathcal{A} be the class of functions f that are analytic in the open unit disk Δ and are normalized such that f(0) = f'(0) - 1 = 0. Also, let \mathcal{S}^* be the class of normalized starlike univalent functions

$$\mathcal{S}^* = \left\{ f \in \mathcal{A} : \operatorname{Re}\left[\frac{zf'(z)}{f(z)}\right] > 0, \ z \in \Delta \right\}.$$

Now, using the operator

$$D[f](t,z) = t|z|^2 \frac{f(z)}{zf'(z)} + (1-t) \left[1 - \frac{f(z)f''(z)}{[f'(z)]^2} \right] (1-|z|^2)$$

(t is real and $z \in \Delta$) we define class S_t^* , $t \in [0,1]$, consisting of functions $f \in \mathcal{A}$ such that

$$\operatorname{Re} D[f](t,z) \ge 0, \quad z \in \Delta.$$

It turns out that the family of classes \mathcal{S}_t^* , $t \in [0,1]$, is a filtration of the class of starlike functions. In addition, for a function f from \mathcal{S}_t^* we give a result over the real part of $\frac{f(z)}{zf'(z)}$ and an approximation property of f.