On matrices and vector field in Minkowski 3-space

Tunahan Turhan¹, Vildan Özdemir², Nihat Ayyıldız³

¹ Seydişehir Vocational School, Necmettin Erbakan University, Konya, Turkey
² Department of Mathematics, Faculty of Science, Selçuk University, Konya, Turkey
³ Department of Mathematics, Faculty of Science, Silleyman Demirel University, Isparta, Turkey
tturhan@konya.edu.tr, vildanbacak@selcuk.edu.tr, nihatayyildiz@sdu.edu.tr

In this work, we give three different forms for matrix A depending on the causel characters of the vector x by analyzing the non-zero solutions of the equation A(x) = 0, $x \in \mathbb{E}^3_1$, in Minkowski 3–space, where A is the skew-symmetric matrix corresponding to the linear map \mathbf{A} . Also, we give some theorems and classifications about integral curves of a linear vector field in Minkowski 3-space.

REFERENCES

- [1] Acratalishian, A., On the Linear Vector Field in \mathbb{E}^{2n+1} , Commun. Fac. Sci. Ank., 39, (1989) 21–35.
- [2] Duggal, K. L., Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, The Nedherlands, 1996.
- [3] Ferrandez, A., Gimenez A., and Lucas P., Null Generalized Helices in Lorentz-Minkowski Spaces, J. Phys. A: Math. Gen., 35, (2002), 8243–8251.
- [4] Galbis A., Maestre M., Vector Analysis Versus Vector Calculus, Springer, London, 2012.
- [5] Karger, A., Novak, J., Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, 1978
- [6] O'Neill, B., Semi-Riemann Geometry: with Applications to Relativity, Academic Pres, New York, 1983.
- [7] Uğurlu, H.H., Kocayiğit, H., The Frenet and Darboux Instantaneous Rotation Vectors of Curves on Time-like Surface, Mathematical & Computational Applications, 1 (1996) 133–141
- [8] Yaylacı, T., *Linear Vector Fields and Applications*, MSc thesis, Ankara University, The Institute of Science, Ankara, 2006.