On matrices and vector field in Minkowski 3-space

Tunahan Turhan ${ }^{1}$, Vildan Özdemir ${ }^{2}$, Nihat Ayyildiz ${ }^{3}$
${ }^{1}$ Seydişehir Vocational School, Necmettin Erbakan University, Konya, Turkey
${ }^{2}$ Depatment of Mathematics, Faculty of Science, Selçuk University, Konya, Turkey
${ }^{3}$ Depatment of Mathematics, Faculty of Science, Süleyman Demirel University, Isparta, Turkey tturhan@konya.edu.tr, vildanbacak@selcuk.edu.tr, nihatayyildiz@sdu.edu.tr

In this work, we give three different forms for matrix A depending on the causel characters of the vector x by analyzing the non-zero solutions of the equation $A(x)=0, x \in \mathbb{E}_{1}^{3}$, in Minkowski 3 -space, where A is the skew-symmetric matrix corresponding to the linear map A. Also, we give some theorems and classifications about integral curves of a linear vector field in Minkowski 3-space.

References

[1] Acratalishian, A., On the Linear Vector Field in $\mathbb{E}^{2 n+1}$, Commun. Fac. Sci. Ank., 39, (1989) 21-35.
[2] Duggal, K. L., Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, The Nedherlands, 1996.
[3] Ferrandez, A., Gimenez A., and Lucas P., Null Generalized Helices in LorentzMinkowski Spaces, J. Phys. A: Math. Gen., 35, (2002), 8243-8251.
[4] Galbis A., Maestre M., Vector Analysis Versus Vector Calculus, Springer, London, 2012.
[5] Karger, A., Novak, J., Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, 1978
[6] O'Neill, B., Semi-Riemann Geometry: with Applications to Relativity, Academic Pres, New York, 1983.
[7] Uğurlu, H.H., Kocayiğit, H., The Frenet and Darboux Instantaneous Rotation Vectors of Curves on Time-like Surface, Mathematical \& Computational Applications, 1 (1996) 133-141.
[8] Yaylacı, T., Linear Vector Fields and Applications, MSc thesis, Ankara University, The Institute of Science, Ankara, 2006.

